364 research outputs found

    New Limits on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    We update the limit from the 90 GHz PIQUE ground-based polarimeter on the magnitude of any polarized anisotropy of the cosmic microwave radiation. With a second year of data, we have now limited both Q and U on a ring of 1 degree radius. The window functions are broad: for E-mode polarization, the effective l is = 191 +143 -132. We find that the E-mode signal can be no greater than 8.4 microK (95% CL), assuming no B-mode polarization. Limits on a possible B-mode signal are also presented.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on the magnitude of any polarized anisotropy in the cosmic microwave background. The combination of the scan strategy and full width half maximum beam of 0.235 degrees gives broad window functions with average multipoles, l = 211+294-146 and l = 212+229-135 for the E- and B-mode window functions, respectively. A joint likelihood analysis yields simultaneous 95% confidence level flat band power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode angular power spectra, respectively. Assuming no B-modes, a 95% confidence limit of 10 microkelvin is placed on the amplitude of the E-mode angular power spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    Full text link
    The Atacama B-Mode Search (ABS) instrument is a cryogenic (\sim10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the Cosmic Microwave Background (CMB) at large angular scales (40<<50040<\ell<500) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at 100\ell \sim100. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer (OMT) and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1/f1/f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.Comment: 7 pages, 3 figures, conference proceedings submitted to the Journal of Low Temperature Detector

    Systematic effects from an ambient-temperature, continuously-rotating half-wave plate

    Full text link
    We present an evaluation of systematic effects associated with a continuously-rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. Here we present our in-field evaluation of celestial (CMB plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ~0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have reported. No significant dipole or quadrupole terms are detected; we constrain each to be <0.07% (95% confidence), limited by statistical uncertainty in our measurement. Dipole and quadrupole leakage at this level lead to systematic error on r<0.01 before any mitigation due to scan cross-linking or boresight rotation. The measured scalar leakage and the theoretical level of dipole and quadrupole leakage produce systematic error of r<0.001 for the ABS survey and focal-plane layout before any data correction such as so-called deprojection. This demonstrates that ABS achieves significant beam systematic error mitigation from its HWP and shows the promise of continuously-rotating HWPs for future experiments.Comment: 11 pages, 8 figures; revision to submitted version, Fig. 5 and Eqs. (14) and (15) corrected; added Fig. 9 and description, text revisions for clarification, Fig. 5 revised for better calibration, corrected labeling errors and plotting bugs in Fig. 3, 4, and Eq. (14) and (15

    Modulation of CMB polarization with a warm rapidly-rotating half-wave plate on the Atacama B-Mode Search (ABS) instrument

    Full text link
    We evaluate the modulation of Cosmic Microwave Background (CMB) polarization using a rapidly-rotating, half-wave plate (HWP) on the Atacama B-Mode Search (ABS). After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 seconds, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly-rotating HWP.Comment: 8 pages, 8 figures, Published in RSI under the title "Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument.

    New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz

    Full text link
    We present new measurements of the cosmic microwave background (CMB) polarization from the final season of the Cosmic Anisotropy Polarization MAPper (CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz) correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After selection criteria were applied, 956 (939) hours of data survived for analysis of W-band (Q-band) data. Two independent and complementary pipelines produced results in excellent agreement with each other. A broad suite of null tests as well as extensive simulations showed that systematic errors were minimal, and a comparison of the W-band and Q-band sky maps revealed no contamination from galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands in the range 200 < l < 3000, extending the range of previous measurements to higher l. The E-mode spectrum, which is detected at 11 sigma significance, is in agreement with cosmological predictions and with previous work at other frequencies and angular resolutions. The BB power spectrum provides one of the best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap

    An Absolute Measurement of the Cosmic Microwave Background Radiation Temperature at 10.7 GHz

    Get PDF
    A balloon-borne experiment has measured the absolute temperature of the cosmic microwave background radiation (CMBR) at 10.7 GHz to be Tcmbr = 2.730 +- .014 K. The error is the quadratic sum of several systematic errors, with statistical error of less than 0.1 mK. The instrument comprises a cooled corrugated horn antenna coupled to a total-power radiometer. A cryogenic mechanical waveguide switch alternately connects the radiometer to the horn and to an internal reference load. The small measured temperature difference (<= 20 mK) between the sky signal and the reference load in conjunction with the use of a cold front end keeps systematic instrumental corrections small. Atmospheric and window emission are minimized by flying the instrument at 24 km altitude. A large outer ground screen and smaller inner screen shield the instrument from stray radiation from the ground and the balloon. In-flight tests constrain the magnitude of ground radiation contamination, and low level interference is monitored through observations in several narrow frequency bands.Comment: 14 pages, 1 figure, submitted to ApJ

    Discrete population balance models of random agglomeration and cleavage in polymer pyrolysis

    Get PDF
    The processes of random agglomeration and cleavage (both of which are important for the development of new models of polymer combustion, but are also applicable in a wide range of fields including atmospheric physics, radiation modelling and astrophysics) are analysed using population balance methods. The evolution of a discrete distribution of particles is considered within this framework, resulting in a set of ordinary differential equations for the individual particle concentrations. Exact solutions for these equations are derived, together with moment generating functions. Application of the discrete Laplace transform (analogous to the Z-transform) is found to be effective in these problems, providing both exact solutions for particle concentrations and moment generating functions. The combined agglomeration-cleavage problem is also considered. Unfortunately, it has been impossible to find an exact solution for the full problem, but a stable steady state has been identified and computed
    corecore